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ES-1

EXECUTIVE SUMMARY

If we are to present instruction that is available anytime and anywhere, takes advan-

tage of the substantial tutorial efficiencies of one teacher for every student, and is affordable,

we must have recourse to technology—specifically, computer technology. Such technology

can be used in instructional applications that range from drill and practice and tutorial dia-

logues, to multiplayer simulations and games. It can be used in stand-alone modes, or it can

be used to supplement classroom instruction. It can be used by individuals or by groups. In

all cases, however, it must take account of the current state of the learner, the eventual state

of the learner that the instruction is intended to produce, and the instructional techniques that

reliably effect transitions from one state to the other.

Models of the learner that represent these current and objective states must, to an

appreciable extent, be models of the learner’s cognition, something that underlies compe-

tence and produces the human skills, performance, and abilities needed for success in all

military operations. These models can be implicit, as in intrinsically programmed instruc-

tion, or they can be explicit. Both types have been used in technology-based instruction

from its beginning.

Early explicit models were largely quantitative. These models involved relatively

simple instructional paradigms but fairly elaborate mathematics, including instructional

applications of optimal control theory. Current efforts are more concerned with qualitative

models, 19 of which are briefly described and discussed. Each of these models can con-

tribute to the efficiency and effectiveness of technology-based instruction. However, new

challenges have arisen from today’s uncertain, asymmetric operational environment, and

these challenges may require responses that cannot be foreseen or be well prepared for in

advance.

Our military personnel must be prepared to expect the unexpected and to meet

unexpected events with individual and collective agility, creativity, and adaptability. These

qualities are fundamentally cognitive in nature and require more powerful and comprehen-

sive cognitive models if they are to serve our programs of education, training, decision-

making, and performance aiding successfully.
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MODELING THE USER FOR
EDUCATION, TRAINING, AND PERFORMANCE AIDING

A. INTRODUCTION

This document addresses research on digital representations of human cognitive

processes that can be used to develop computer-mediated learning and performance-aiding

systems. We refer to such representations as “models” of human cognition. Since this

topic is extensive in breadth and depth, we focused our discussion on the following

questions:

• What is the military value of these models?

• What is their current state of development?

• What is their relationship to instructional systems development?

• What research and development (R&D) should be undertaken to advance their
value and utility?

Many valuable contributions are being made by researchers who are modeling neu-

rological activity at one end of the behavioral spectrum and by researchers who are mod-

eling human physical activity and performance at the other end. This document is aimed

somewhere in the middle of these efforts. It concerns models, or representations, of human

cognitive processes such as perception, memory, learning, decision-making, and problem

solving. These processes arise from “micro” neurological activity at one end of the spec-

trum and, in turn, produce “macro” physical activity and performance at the other end.

Eventually, R&D may yield models that unify the full spectrum of human behavior, from

neurons to psychomotor activity; however, the current state of knowledge limits us to efforts

to understand and model components of this spectrum. Hence, this document focuses on

one such component, cognition, which seems an appropriate level of concern for learning

and human performance.

The term “the user” is used throughout this document. This term is intended as a

catch-all for students, decision-makers, technicians, analysts, and anyone else who may be

using computer technology for education, training, decision-making, and performance

aiding. Our focus is on the digital representation of these users’ cognitive processes.
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B. THE MILITARY VALUE OF COGNITIVE MODELING

An obvious and frequently neglected fact is that human competence, which is a

product of human cognition, is essential to every military operation across all echelons of

command and activity. Its importance is perennially evident in the conduct of military

operations. Even in the increasingly technology-saturated environments of modern opera-

tions, human competence is needed to launch and control systems in space, to operate and

maintain robotic vehicles, to deploy remote sensors and systems in contested territory, and

so forth. In short, we have no unmanned systems. Without competent people to operate,

maintain, and deploy our materiel assets, investments in these assets will return little and

may, in fact, be wasted. Given the wide availability of technology and the ease with which it

can be obtained, human competence may increasingly account for the difference between

success and failure in military operations. Its availability to commanders anytime and

anywhere is a matter of first importance.

How can we ensure this availability? Training (and its performance-aiding analog)

provides one means to accomplish this objective, particularly if this training can be delivered

anytime and anywhere. For example, we might supply each user with an omnipresent tutor.

Such tutoring is probably best done by a human who possesses expertise in the relevant

subject matter, by a comprehensive range of tutorial techniques, and by sufficient knowledge

of the user to identify, establish, and sustain in that individual the precise human competence

needed. Research has shown such tutoring to be extremely effective, producing an often-

noted two standard deviations of improvement over less accessible and less effective class-

room instruction (Bloom, 1984). However, such an approach has also been called an

instructional imperative and an economic impossibility because, for obvious reasons, a

human tutor cannot be supplied to every user. This situation creates a gap between what is

needed and what we can afford. As in many other endeavors, technology is being applied to

fill this gap.

The research evidence suggests that such applications of technology can succeed. In

nearly 300 studies comparing classroom (one teacher, many students) with computer-medi-

ated, individualized instruction (one computer, one student) across many different settings

and subject matters, a “rule of thirds” emerges. That is, compared with classroom instruc-

tion, technology-based instruction costs about a third less and also either increases achieve-

ment by a third when instructional time is held constant or decreases time to reach constant

levels of achievement by about a third. Fletcher (1997, 2002), Foster and Fletcher (2002),

Kulik (1994), Niemiec, Sikorski, and Walberg (1989), and others have presented more
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detailed discussions of these data. The primary payoff for military operations is the more

rapid and reliable preparation of personnel to perform operational duties, which produces

significant payoffs for resource expenditures, readiness, and, most importantly, operational

effectiveness.

Similar research evidence exists in support of technology used to aid performance

and decision-making. For instance, technicians with only general training have been found

to perform as well as specialists (who required time-consuming and expensive training) if

they are provided hand-held or wearable performance aids (e.g., Fletcher and Johnston,

2002; Joyce, 2001; Wisher and Kinkaid, 1989). These aids contribute to military readiness

and effectiveness not only by enabling individuals to be released earlier for operational duty,

but also by improving human competence for maintaining, operating, and deploying materiel

assets—thereby significantly improving materiel readiness.

Costs are also a factor. For instance, the United States military spends about

$4 billion a year on specialized skill training. This is the training provided after “basic” or

accession training to qualify personnel for the many technical jobs (e.g., wheeled vehicle

mechanics, radar operators, avionics technicians, oceanographers, medical technicians)

needed to perform military operations. It does not include aircraft pilot training, field

training, or factory training, which are covered in separate cost categories. If the United

States were to reduce by 30 percent the time to train 20 percent of the personnel undergoing

specialized skill training, it would save over $250 million per year. If it were to do so for

60 percent of the personnel undergoing specialized skill training, it would save over

$700 million per year (Foster and Fletcher, 2002). These are appreciable savings by most

standards.

What do these analyses and observations have to do with cognitive modeling?

Effective education and training must start with a dynamic and updateable understanding, or

model, of the current state of the user—a model of the knowledge, skills, and abilities the

user should attain and the instructional techniques, strategies, and processes needed to meet

the goals of this model. This sort of modeling occurs in classroom learning where teachers

continually assess what their students know, the level or degree to which they know it, and

the most efficient ways to progress in achieving instructional goals. As discussed in the next

section, this modeling is also found both implicitly and explicitly in effective technology-

based instruction.

Similar modeling processes are also required to support performance aiding and

decision-making, even though the emphasis in these applications is on problem solution
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rather than on learning. What is needed is a model of the user to provide advice that can be

understood and carried out, a model of the system or situation with which the user is inter-

acting, and the ability to maintain something similar to an instructional dialogue to help the

user identify correct solutions or decisions.

In both cases, concern with the knowledge, skills, and abilities that comprise human

competence leads us to human cognition and the need to map current cognitive states onto

goal cognitive states and determine what must be done next. This presents severe difficulties

for classroom instruction (one teacher, many students). For instance, a problem arises from

the degree to which students in a typical classroom vary in their prior knowledge, abilities,

and learning progress. Research suggests variation by about a factor of five (e.g., Corno and

Snow, 1986; Gettinger and White, 1980; Gustaffson and Undheim, 1996; Tobias, 1989).

Especially important for military applications is the observation that variability in prior

knowledge increases with age and may be more important in determining progress in post-

secondary venues such as military training than it is for students in their earlier years of

schooling. For both efficiency and effectiveness, such variability suggests the importance of

tailoring interactions in military education, training, and performance aiding to the specific

needs of individual users.

Assessment of cognition in classroom instruction is necessarily both informal and

imprecise. If we seek to achieve human performance outcomes reliably (anytime, anywhere)

and affordably, we must have recourse to technology. If we are to use computer technology

to achieve these ends, we must be able to represent—or model in digital form—current cog-

nitive states, goal states, and ongoing progress from one to the other. The empirical results

discussed previously, arising from technology-based education, training, and performance

aiding, suggest to some degree that we have been successful in doing this. The question

then naturally arises as to how well our ability to implement and use such models meets the

need for them.

C. THE CURRENT STATE OF COGNITIVE MODELING

1. Implicit Cognitive Models

Cognitive models are implemented implicitly and explicitly in technology-based

instruction. Consider the following sample instructional item, which is typical of

much—perhaps most—computer-mediated instruction:
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In the multiplication problem 3 × 4 = 12, the number 12 is called a ________.

A. Factor {Branch to remedial X1}

B. Quotient {Branch to remedial X2}

C. Product {Reinforce, go to next}

D. Power {Branch to remedial X3}

In this item, the system (the computer instructor) assumes that a student responding

“A” misunderstands the meaning of “Factor” and lacks an understanding of “Product,”

or both. The student will be branched to some instructional materials intended to correct one

or the other of these cognitive states and then will be returned to this item or one similar to

it. The same type of remedial approach is applied to responses of “B” and “D.” A student

responding with “C” may be rewarded (i.e., reinforced) with positive feedback and is then

sent to whatever item will continue progress toward the instructional goal(s)—an action that,

by itself, may constitute positive reinforcement.

The preceding example appears in an article by Norman Crowder written for auto-

mated teaching (Crowder, 1959). We can assume that the use of cognitive models is a not

recent innovation in technology-based instruction, but a model of cognition and instructional

progress is evident in this approach. It covers transitions from unlearned to learned states

and illustrates what Crowder called “intrinsic” programming. This approach stands in

contrast to the expensive and difficult-to-prepare “extrinsic” programming advocated by

B. F. Skinner (e.g., 1954), and, for reasons of economy and utility, it is the dominant

approach still in use today in technology-based instruction. It also covers many subject

matters, posing questions following text paragraphs, graphic displays, simulations, audio

presentations, video sequences, and/or other sources of instructional content, but the under-

lying logic remains the same as Crowder’s original: display something, elicit a response,

and branch to remedial or reinforcing material depending on the response.

To prepare an instructional item, a developer must anticipate and prepare responses

for several discrete cognitive states, represented by the correct answer (response C) and the

“distractors” (responses A, B, and D) to the item. The cognitive model represented by

these states is static, implicit, and limited, but it is there. The main difference between the

cognitive modeling in Crowder’s and Skinner’s approaches and the cognitive modeling

being developed today is that the earlier models for intrinsic and extrinsic programming

were implicit, embodied in the program of instruction, whereas today developers are
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attempting to use more explicit models of cognition that can be abstracted, expressed, and

validated separately from the systems in which these models are used.

2. Explicit Cognitive Models: Quantitative

These more explicit cognitive models are being used for applications such as intelli-

gent tutoring systems (ITSs) and the human behavior modeling needed to generate com-

puter (automated) military forces for constructive and virtual simulation. Explicit models of

cognition were also applied early on (in the 1960s). These simple models were intended to

account for rudimentary learning objectives that could be reduced to something like the sub-

stantial amounts of stimulus-response, associative pairing required to learn material such as

arithmetic “facts” (addition, subtraction, multiplication tables), second language vocabulary,

and technical jargon (names and functions of biological or mechanical structures). None-

theless, they led to sophisticated and effective instructional approaches, and the line of

research needed to determine the full range of learning situations and objectives to which

they could be applied was begun but left unfinished and is rarely found today.

As an example of this approach (and its use of cognitive models), consider the fol-

lowing model of learning (adapted from Paulson, 1973), which attempted to account for the

probability that a particular item for a particular learner would transition from the unlearned

state (U), to either a short-term learned state (S) [i.e., present in working memory (WM)] or

to a long-term learned state (L) [i.e., stored in long-term memory (LTM)]:

State on Trial n+1

L S U P (correct)

L 1 0 0 1

S c 1–c 0 1
State

o n
Trial n

U a b 1–a–b g

In words:

• If a learned item (state L) is presented, then:

– With probability = 1, it stays there.
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• If an unlearned item (state U) is presented:

– With probability = a, it will transition to LTM and the learned state.

– With probability = b, it will transition to a short-term state (S) in WM,
from which it can either be learned or forgotten.

– With probability = 1–a–b, it will remain unlearned.

• If an item is in short-term WM (state S):

– With probability = c, it will transition to LTM and the learned state.

– With probability = 1–c, it will remain in the short-term state.

• An item in the short-term state will not slip back to the unlearned state.

This formulation accounts for guessing. As shown in the right-most column in the

previous model of learning matrix, Paulson assumed a probability = g (presumably for

“guessing”) of a correct answer to an unlearned item but assumed a probability = 1 for a

correct answer to an item in the learned or short-term state. The parameters are estimated for

each item-student combination.

A key feature of this model is that it accounts for items that are not presented on a

trial. In Paulson's formulation, which is based on Rumelhart’s General Forgetting Theory

(1967), when an item is not presented, transitions between states are expected to occur in

accord with the following transition matrix:

State on Trial n+1

L S U

L 1 0 0

S 0 1–f f
State

o n
Trial n

U 0 0 1

In words, when an item is not presented:

• If it is in the learned or unlearned state, it stays there.

• If it is in the short-term state, it may regress to the unlearned state with prob-
ability f or remain in the short-term state with probability 1–f.

Formulations such as this, which are based on explicit transition models of memory,

led to an instructional strategy that has proven to be optimal in maximizing the number of

items learned in the total time set aside for instruction, T, and allowing for a predetermined
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number of items, N, to be presented in a single session (e.g., Atkinson and Paulson, 1972).

The optimal solution determines which N items to present to a particular student so that the

total number of items the student learns is maximized at time T. The solution is roughly the

following:

• Before each trial, identify the item or items in N that have received the fewest
number of correct responses since the last error.

• If only one item is identified, present that item. If more than one item is identi-
fied, select from this group the item or items that have been presented the few-
est number of times.

• If only one item remains, present that item. If more than one item remains,
select one at random and present it.

This description does not describe how items that have reached criterion in the cur-

rent pool of N items can be optimally replaced with new items. Atkinson and Paulson

(1972) and Chant and Atkinson (1973) have discussed such procedures.

Quantitative models of this sort continue to be used in technology-based instruction,

as evidenced by efforts to apply Bayesian networking to assess the cognitive states of learn-

ers (e.g., Van Lehn and Niu, 2001). These models use Bayes’ theorem to work backward

from users’ responses to determine the probabilities that they are using (perhaps have

learned) specific cognitive processes. This approach can lead to quite sophisticated models

of learners’ knowledge and skills.

Three points may be worth making here:

1. Both implicit and explicit models of cognition and cognitive processes have
been used in technology-based instruction from its beginning.

2. Fairly simple cognitive models for fairly simple instructional paradigms can
lead to sophisticated and effective instructional strategies.

3. This approach remains a promising line of quantitative research that deserves to
be explored more fully.

3. Explicit Cognitive Models: Qualitative

A line of R&D in cognitive modeling that has been more vigorously pursued in

recent years is less quantitative than the preceding models, but the range of cognition cov-

ered tends to be more comprehensive and can be used to meet a wider range of learning

objectives. This work typically comes under the heading of “human behavior modeling”

and is increasingly used in the development of simulations for training personnel and units,
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analyzing tactical, operational, and strategic alternatives, and designing, developing, and

acquiring military materiel.

We are fortunate that several systematic and comprehensive analyses of these mod-

els have appeared recently, such as those by Pew and Mavor (1998), who reviewed 11 such

models; Ritter et al. (2002), who reviewed 7 models not covered by Pew and Mavor; and

Morrison (2003), who reviewed 19 such models.

In these reviews, the models selected for analysis were intentionally devised to be

implemented in digital form (in computer algorithms). Doing this for any model is a signifi-

cant demonstration. If a model can be represented in an algorithm, it can be tested. Using its

algorithmic representation to capture and test cognitive processes can significantly enhance

our knowledge of these processes and the effectiveness of our education, training, and

performance-aiding applications. Diagnostic information that indicates where the model is

correct will demonstrate the validity of the model, and diagnostic information that indicates

where the model is incorrect will suggest where it must be modified to account for the full

range of human cognition. Significant scientific and technological advances, as well as sub-

stantial improvements in our ability to educate, train, and assist military personnel, can arise

from this sort of information.

As Morrison (2003) points out, most of these models are systems of if-then, condi-

tion-response (“production”) rules that simulate cognitive structures and processes.

Table 1 summarizes the 19 models he reviewed. These models provide a snapshot of the

current state of human cognition and behavior representation.

How can these models contribute to the development of computer-mediated learning

and performance-aiding environments? As suggested previously, a model intended to sup-

port education and training needs either an implicit or explicit model of cognition if it is to

assess the state of a learner’s knowledge, skill, and abilities. To do this, it must represent

memory and its interactions with other cognitive functions, such as perception and attention.

It can also represent cognitive functions such as decision-making and problem solving and

cognitive responses to the environment, such as social behavior and situation awareness

(SA) and/or the extent of cognitive workload.

However, if a model is developed to support education and training, having it simply

represent the current state of cognitive processing is not enough. It must also represent and

project its evolution and development. In short, it must include a model of human learning.
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Table 1. Summary Descriptions of Cognitive Aspects
in Models Reviewed by Morrison (Source: Morrison, 2003)

Model Name Summary Description Reference(s)

Atomic Components of
Thought (ACT)

Intended to provide a unified theory of mind and a
design basis for instructional environments (e.g.,
intelligent tutors, computer-generated forces) and
human interfaces. Distinguishes between declarative
knowledge (represented with semantic networks) and
procedural knowledge (represented using if-then rules).

Lebiere, 2002

Anderson et al.,
2002

Adaptive Resonance Theory
(ART)

Family of neural net models designed to explain
sensory-cognitive processes (e.g., perception,
recognition, attention, reinforcement, recall, and WM).
Postulates bottom-up (e.g., perceptions) and top-down
(e.g., expectations, attention control) functions in WM
that interact to produce learning.

Grossberg, 1976a;
1976b

Krafft, 2002

http://web.umr.
edu/~tauritzd/art

Architecture for Procedure
Execution (APEX)

Intended to reduce the time and effort needed to
develop models of human performance in complex,
dynamic environments (e.g., simulations, explorations
of human performance theories, and assessments of
equipment design on human performance). Includes
goal-directed action selection for tasks and procedures
and resource allocation for perceptual (mostly visual),
cognitive, and psychomotor functions.

Freed et al., 2002

http://www.
andrew.cmu.edu/~
bj07/apex

Business Redesign Agent-
Based Holistic Modeling
System (Brahms)

Models social and man-machine interactions. Uses
agents to model interactions among physically
dispersed groups (e.g., teams), and if-then rules
(“detectables” and “beliefs”) to model decision-making
(via “thoughtframes”) and behavior within the groups.
Emphasizes ethnographic analyses and socio-
technical work practices, activities shaped by socio-
technical environment, and constructivist, situated
cognition to model cognition and behavior.

Sierhuis and
Clancey, 1997

Clancey et al.,
1998

Acquisti et al.,
2001

Cognition and Affect Project
(CogAff) (with associated
SimAgent toolkit)

Conceptual space for describing cognitive
architectures. Integrates emotional and cognitive
processes. Incorporates three layers of cognition
(reactive, deliberative, and reflective or meta-
cognitive), three layers of information processing
(perception, central processing, and action), and three
types of emotions (primary based on reaction,
secondary based on deliberation, and tertiary based on
reflection)—all producing different perceptual, memory,
and motor functions.

Sloman, 2001;
2003

http://www.cs.
bham.ac.uk/~axs/c
ogaff.html
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Table 1. Summary Descriptions of Cognitive Aspects
in Models Reviewed by Morrison (Source: Morrison, 2003) (Continued)

Model Name Summary Description Reference(s)

Cognition as a Network of
Tasks (COGNET) [with
associated Generator of
Interface Agents (GINA) and
iGEN™ toolkits)

Intended for cognitive task analysis and description of
work domains in multitask environments requiring
contemplative, decision-oriented, open-ended
responses. Uses three subsystems to represent
information processing (sensory/perceptual, mental
modeling, action/motor), four forms of if-then rule-
based task knowledge (goal-directed task hierarchies,
perceptual demons to guide attention, blackboard for
organizing declarative information, and possible
actions linked to time and resource requirements), and
meta-cognitive functions. Allows interfacing with other
applications.

Zachary et al.,
2001

http://www.chiinc.
com/cognethome.s
html

Cognitive Complexity Theory
(CCT) (with associated
GOMS Language and
Evaluation Analysis-3
(GLEAN3) toolkit)

Focuses on human interface design, human-computer
interaction, and sequential task performance. Employs
device models (transition networks), user models
(sequentially executed if-then rules, the fundamental
CCT units of cognition, retrieve from LTM), and mental
operators to represent covert cognitive processes.

Kieras and Polson,
1985

Kieras, 1999

Cognitive Objects within a
Graphical EnviroNmenT
(COGENT)

Intended solely to provide tools (via a visual
programming environment that evolves with the model
being built) for cognitive modeling, assuming functional
modularity (cognition as interaction among semi-
autonomous subsystems) and using low-level
processing components.

Cooper, Yule, and
Sutton, 1998

Yule and Cooper,
2000

http://cogent.
psyc.bbk.ac.uk

Concurrent Activation-
Based Production System
(CAPS)

Hybrid model for central cognitive functions (e.g.,
reading comprehension). Primary focus is on modeling
brain activation patterns in high-level cognition via if-
then rules for specific areas of the brain and
associative networks for cognitive subsystems. Total
activation in WM is capped, concerned exclusively with
declarative knowledge (facts), but with different limits
for different individuals. LTM includes procedural and
declarative knowledge.

Just, Carpenter,
and Varma, 1999

http://coglab.psy.
cmu.edu/projects_
set.html
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Table 1. Summary Descriptions of Cognitive Aspects
in Models Reviewed by Morrison (Source: Morrison, 2003) (Continued)

Model Name Summary Description Reference(s)

Construction-Integration
Theory (C-I Theory)

Uses a symbolic theory of sentence comprehension
and propositions (actions and objects of the action) and
stresses goal formation to provide a general model of
cognition. Comprehension progresses from
approximations to verified integration through mutually
reinforced associations and spreading activation in
memory. Extended to cover comprehension of novel
computer interfaces [LInked model of Comprehension-
based Action planning and Instruction (LICAI)] and new
Web sites [Comprehension-based Linked model of
Deliberate Search (CoLiDeS) model] and to incorporate
concepts from Latent Semantic Analysis (LSA) used to
derive meaning from text.

Kintsch, 1998

Landauer and
Dumais, 1997

Kitajima and
Polson, 1997

Kitajima,
Blackmon, and
Polson, 2000

http://psych-
www.colorado.
edu/ics

Distributed Cognition
(DCOG)

Intended to model individuals’ expert behavior with
agents that use multiple strategies to respond to a
complex environment (air traffic control). Based on a
two-dimensional (2-D) space: abstraction with three
levels (skill-based responses to signals, rule-based
responses to signs, and knowledge-based responses
to symbols) and decomposition (ranging from individual
component to total system processing). Processing
within this space depends on the level of expertise, the
workload environment, and an individual’s preferred
level of engagement.

Eggleston, Young,
and McCreight,
2000; 2001

Executive Process/
Interactive Control (EPIC)

Intended to model details of peripheral cognitive
processes, input (perception), and output
(psychomotor responses) to inform human-system
interface design by predicting the order and timing of
responses. Includes long-term storage of declarative
and procedural knowledge and WM for assessing their
application. Capacity and retrieval limitations arise only
from perceptual and/or psychomotor systems, not from
central memory store.

Kieras and Meyer,
1995

http://www.eecs.
umich.edu/~kieras/
epic.html

Human Operator Simulator
(HOS)

Intended to inform human-system interface design by
modeling human performance based on the sequence
and timing of subtasks organized in networks. Uses
simulation objects (configuration of displays and
controls), task networks (if-then rules selecting verb-
object pairs used to manipulate the objects), and micro-
models (times to complete required subtasks involving
perception, information processing, and psychomotor
responses) to determine human response times.

Wherry, 1976

Harris, Iavecchia,
and Dick, 1989

Glenn, Schwartz,
and Ross, 1992
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Table 1. Summary Descriptions of Cognitive Aspects
in Models Reviewed by Morrison (Source: Morrison, 2003) (Continued)

Model Name Summary Description Reference(s)

Man-machine Integrated
Design and Analysis System
(MIDAS)

Intended to inform human-system interface design by
modeling individuals and interactions among individuals
in performing multiple, concurrent tasks. Uses sensory
input [operators and perceivable (detectable,
recognizable, and identifiable) objects], memory [with
declarative (beliefs in LTM, contexts in WM) and
procedural components], decision-making, attention
(with limitations on processing resources), SA (actual
and perceived), and psychomotor output to model
human operator limitations and capabilities.

Corker and Smith,
1993

Hart et al., 2001

http://caffeine.arc.
nasa.gov/midas/in
dex.html

Micro Systems Analysis of
Integrated Network of Tasks
(Micro SAINT) [may include
the Integrated Performance
Modeling Environment
(IPME), using HOS micro-
models, and WinCrew for
estimating workload]

Simulation tool that uses a detailed task analysis to
decompose human performance into a networked
hierarchy (with branching logic and sequential
dependencies) of discrete tasks and subtasks for
which performance estimates can be validated.
Network consists of subtask nodes (with launching
conditions, time to complete, and effects) and
relationships (that may be probabilistic, tactical
requiring a threshold value, or multiple initiating more
than one subtask). Designed to communicate with other
models and applications through middleware.

Laughery and
Corker, 1997

Operator Model Architecture
(OMAR) (Flavors Expert
(FLEX), an expert system
toolkit, to model decision-
making as a rule-following
process)

Models human behavior as interactions among
independent computational agents representing
interacting individuals or cognitive processes within
individuals. Allows both sequentially dependent and
parallel task performance, with order determined by
activation levels of tasks (without an explicit executive
process). Allows facile interface with other models.

Deutsch,
MacMillan, and
Cramer, 1993

Deutsch, 1998

Cramer, 1998

PSI (Not an acronym)1 Attempts to integrate motivation with cognitive
processes. Based on three levels of needs that interact
to determine motive strength and specific goal
behaviors: system needs (water and energy),
preservation level (pain avoidance), and information
level (certainty, competence, affiliation). Action
strategies first seek automatized skills, then
knowledge-based behavior, and then trial and error to
satisfy goals.

Bartl and Dörner,
1998

Ritter et al., 2002

http://www.uni-
bamberg.de/~ba2d
p1/psi.html

                                                

1 PSI is usually presented in all capital letters, but has not been defined as an acronym. According to
Dietrich Dörner, “PSI is not an acronym. It just is the first letter of the Greek word for "soul". And
this is because it is our intention with the PSI-project not only to simulate cognition, but motivation,
emotion and what we call “action regulation” too. Just the whole soul! And that's the idea behind PSI”
(personal communication, December 29, 2003).
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Table 1. Summary Descriptions of Cognitive Aspects
in Models Reviewed by Morrison (Source: Morrison, 2003) (Continued)

Model Name Summary Description Reference(s)

Situation Awareness Model
for Pilot-in-the-Loop
Evaluation (SAMPLE)

Generalized from original effort to model SA of pilots
and air crews in air combat. Uses cognitive task
analyses, pattern recognition from Klein’s Recognition-
Primed Decision-Making, Endsley’s three levels of
awareness (detection, identification, and prediction),
and Rasmussen’s three tiers of action strategy (skill-
based pattern recognition, standardized if-then rules,
and knowledge-based problem solving) to provide three
stages of processing: information processing (with a
continuous state estimator and a discrete event
detector), situation assessment (with the information
fusion and reasoning required by multitasking), and
decision-making (with a procedure selector and a
procedure executor). Output includes information
disparity, SA disparity, and combat advantage index.

Rasmussen, 1983

Endsley, 1988

Klein, 1989

Mulgund, Harper,
and Zacharias,
2000

State, Operator, And Result
(Soar)

Intended as a comprehensive model of human cognition
focused on operational task domains depicting all
behavior as goal-driven movement through problem
spaces that define states and operators for the task(s)
at hand. Uses a four-cycle iterative process involving
input (via human perception), elaboration (matches if-
then, condition-action rules in LTM with those in WM to
issue proposals for decision-making and direct
commands for psychomotor actions), output
(psychomotor execution), decision (either selects
operators or identifies “impasses” requiring a new
subgoal until all impasses are resolved). Uses a single
process for LTM, learning, task representation, and
decision-making. All learning occurs through
“chunking,” which occurs through impasse subgoaling
and resolution. Emotions arise from SA clarity and
confusion. Integrates individual and team knowledge
and allows goals and plans to be shared among team
members.

Lewis, 2001

http://ai.eecs.
umich.edu/soar

http://www-
2.cs.cmu.edu/afs/
cs/project/
soar/public/www/
home-page.html

http://www.isi.edu/
soar/soar-
homepage.
html

http://www.
nottingham.ac.uk/p
ub/soar/
nottingham/
soar-faq.html

http://phoenix.
herts.ac.uk/~rmy/
cogarch.seminar/
soar.html

Table 2, taken directly from Morrison (2003), summarizes the cognitive functions covered

by the models summarized in Table 1. It indicates which models explicitly represent one or

more of the following cognitive processes: perception, psychomotor performance, attention,

SA, short-term memory (STM), LTM, learning, decision-making, problem solving, cognitive

workload, emotional behavior, and social behavior.
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Table 2. Cognitive and Behavioral Functions Represented
in Models Reviewed by Morrison (Source: Morrison, 2003)

Cognitive Function Required

Acronym/
Abbreviation
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ACT X X X X X X X X

ART X X X X X X

APEX X X X X

Brahms X X X X X

CogAff X X X X X X

COGNET X X X X X X X X

CCT X X X X X

COGENT X X X X

CAPS X X X X X

C-I Theory X X X X

DCOG X X X X X X

EPIC X X X X X

HOS X X X X X

MIDAS X X X X X X X X

Micro SAINT X X X X X

OMAR X X X X X

PSI X X X X X X X X X

SAMPLE X X X X X X

Soar X X X X X X X X X X X

Table 2 indicates that

• All 19 models represent decision-making, but it is largely the reactive form of
decision-making captured in if-then rules.

• All 19 models represent either STM or LTM.

• Perception and attention were well represented in 16 of the reviewed models.
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• Although only four of the models explicitly represented SA, the functions of
SA were present in those representing perception and attention.

• Social behavior was represented in only five of the models.

• Emotional behavior was represented in only three of the models.

• Learning and problem solving were represented in only five of the models.
Morrison suggests that this limited representation may be caused by the nature
of condition-response production models, which can react to the situations
contained in anticipated if-states but which may not adapt well, if at all, to the
unanticipated states and conditions that must be accommodated in learning and
problem solving.

The five models judged to represent learning are ACT, COGENT, CAPS, PSI, and

Soar. All five of these models also represent LTM, STM, and decision-making. All five of

these models, except COGENT, also represent perception, psychomotor performance, and

attention.

A model of cognition that includes learning is necessary for education and training

applications, but it is not sufficient. A model of learning is not a model of instruction. All

19 models, as good as many of them are, lack a model of instruction. This component is

needed to suggest links between specific instructional interventions and specific learning

outcomes—teaching strategies that reliably bring about transitions from the learner’s cur-

rent cognitive state to one capable of producing the intended instructional outcomes.

D. INSTRUCTIONAL SYSTEMS DEVELOPMENT

Attaining a “model of instruction” that is centered around models of human cogni-

tion would lead to what might be called “engineering of instruction”—instruction viewed

as neither art nor science, but as a way to produce specified instructional outcomes reliably

and efficiently. Such a capability for development of instructional and performance-aiding

systems should be based on empirically derived principles that can be applied realistically.

Outcomes might consist of general objectives, such as the ability to transfer knowledge,

long-term retention of knowledge and skill, motivation to continue learning, speed of

response, accuracy of response, and so forth. The outcomes might be associated with more

specific training objectives, such as the ability to locate single component failures in the

XYZ power supply, pack a reserve parachute, or devise tactical plans.

Fragments of such a capability for engineering instruction have been identified in

research literature, data, and findings. Work is needed to organize, substantially expand, and
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include them as principles to be incorporated in current models of cognition. In addition, the

engineering of instruction requires—as an essential foundational element—robust human

cognitive models to enable the training, education or performance-aiding system to “know”

the user and to adapt dynamically to the user’s state.

1. What R&D Do We Need?

This brief review of cognitive models applied to automated instructional and

performance-aiding systems suggests that good progress has been made but that much

remains to be done. The models needed to support fully the broad range of human behavior

required for simulations now used in training, analysis, and acquisition are not available.

More generally, still lacking are the comprehensive models needed to represent subject

matter expertise, levels of student learning, and, most especially, the links between specific

instructional interventions and the development of specifically targeted cognitive abilities

needed for competent performance.

The question, therefore, is: What R&D should be pursued to achieve short-, mid-,

and long-term enhancements in the state of the art? This issue was addressed in a November

1999 workshop that assessed the R&D needed to support the Department of Defense

(DoD) Advanced Distributed Learning (ADL) initiative (Final Report, 1999), in a series of

workshops sponsored in 2002–2003 by the Learning Federation (Learning Federation,

2003), and in another human factors modeling (HFM) symposium (Foster and Fletcher,

2002). These three sources cover a wide range of issues and organize their results in differ-

ent categories, but some common findings, specifically those concerned with research nec-

essary for the development of cognitive models, emerge from them. Table 3 summarizes

findings concerning cognitive modeling. It presents these findings as issues and indicates

some specific research needed to meet these goals and fill gaps in our current capabilities.

The efforts suggested by Table 3 are realistic because they are amenable to research

that can be performed with approaches available from our current state of knowledge. They

suggest goals that can be achieved to an appreciable degree in the next 3 to 5 years. Doing

so will be worth the effort and, for the success of our operational capabilities, the return on

investment will outweigh the cost.

The value of cognitive models has another increasingly important dimension. The

current world environment presents significant challenges to our capabilities for preparing

military personnel to meet these challenges and thereby to our capabilities for providing
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Table 3. Issues and Research Requirements for the Development of Cognitive
Modeling Summarized From Assessments of Learning Technology Needs

Issue Research Requirements

Cognitive theory • Representation of “higher order” cognitive capabilities (e.g., decision-making,
problem solving, meta-cognition, pattern recognition, critical thinking, situational
awareness, teamwork)

• New concepts and theories of cognition and cognitive workload based on new
measurement capabilities

• Valid and verified representation of expertise and its development in complex, ill-
structured environments

• Knowledge representations and ontologies that allow interoperability and logical
operations within and across disciplines

Human behavior
representation
(HBR)

• Comprehensive and accurate representation of individual and of crew, team, and unit
expertise, capabilities, and performance

• Free, cognitively transparent exchange of virtual (avatar) and actual users in crew,
group, and team learning

Cognitive model
authoring

• Automated development, verification, and validation of cognitive models

• Automated processes for performing cognitive analysis and cognitive readiness
assessment

• Automated capture of expertise: self-generating, self-modifying databases built from
cases and examples of successful problem solving and decision-making

• Principles for developing physically and cognitively realistic avatars

User assessment
and representation

• New forms of computer-administered assessment items using the full display, timing,
and natural language understanding capabilities of technology

• Generation of valid, unobtrusive near-real-time assessment from interactions of
individuals, teams, crews, and units with the learning or performance-aiding
environment

• Representation of subject matter misunderstandings and their sources

• Generation and use of questions to build cognitive profiles of users

• Assessment of cognitive workload

• Assessment of the high-level cognitive skills needed to deal with unanticipated and
unexpected situations

Management of
progress

• Ability to match instructional or problem-solving goals with current state of the user
and to generate or select optimal tutorial and/or problem-solving strategies

• Automated principles of design and presentation needed to ensure reliable
achievement of a targeted cognitive state(s) by individuals, crews, teams, and units

• Automated principles for the development of higher-level cognitive skills such as
creativity, adaptability, problem solving, and SA

• Comprehensive understanding of meta-cognition and its development

• Comprehensive understanding of incentive management and its interaction with
cognitive development

• Technology-based tools allowing distributed users to manage their own progress and
problem solving

• Predictions of learning rate and success from user profile information

User interface • Management of user dialogue based on model of user cognitive abilities, style, and
progress toward objective(s)
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military education and training. We have responded in ways that have proven successful in

the past, with task lists, essential task lists, mission-essential task lists, and even joint mis-

sion-essential task lists. These task lists suggest education and training objectives that we

know how to meet.

2. Preparing for the Unexpected

The current asymmetric, unpredictable operational environment now facing our

military personnel will inevitably present situations that are unexpected and for which they

may not be fully prepared. Our military and our allies will have to respond to these situa-

tions with agility, flexibility, creativity, and skillful leadership. Their readiness to acquire the

additional capabilities needed to meet these unexpected, unforeseen challenges will contrib-

ute substantially to the success of their operations. How, then, can we best prepare our peo-

ple to expect the unexpected and deal with it successfully? One important aspect of this

readiness is a cognitive capability. It places special demands on our ability to model cogni-

tion and to train individuals and units. It is an essential component of what we have called

cognitive readiness (Etter, Foster, and Steele, 2000), and a combination of technology-based

education, training, and performance aiding is expected to help our forces achieve it.

The components of cognitive readiness cover issues that include the following:

• SA. This is generally defined as the ability to perceive oneself in relation to the
enemy and the environment. SA has been shown to improve with practice and
instructional feedback.

• Memory. This is described as an active, reconstructive process supported by
two underlying theoretical mechanisms: encoding specificity, which stresses the
importance of external and internal cues, and transfer-appropriate processing,
which stresses actions performed during encoding and retrieval. Tradeoffs exist
between instruction used to enhance the retention and speed of initial acquisi-
tion. Conditions of learning, particularly those providing overlearning, can be
designed to improve retention.

• Transfer of training. This is described as the ability to apply what is learned
in one performance context to another performance context. Massive amounts
of practice with feedback will improve “low-road” transfer and require little
cognitive mediation. Training in forming mindful, conscious abstraction will
improve “high-road” transfer, which requires cognitive mediation.

• Metacognition. This refers to the executive functions of thought, particularly
those pertaining to knowledge and regulation of one’s cognitive processes and
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progress toward accepted goals. Metacognitive skills can be improved by exer-
cises designed to increase the awareness of self-regulatory processes.

• Automaticity. This refers to processes that are performed rapidly, requiring
few attentional resources. Practice with feedback and overlearning can produce
automatic processing in many tasks.

• Problem solving. This transforms goals and subgoals into a plan of action by
processes such as trial and error, proximity, fractionation, and knowledge-based
referrals. Techniques for problem solving matched to goal and situation catego-
ries can be successfully taught, as can the information base needed for
“strong” problem-solving methods, which depend on acquired knowledge.

• Decision-making. This is described as the selection of tactical and strategic
plans, which are frequently primed by the recognition of learned patterns. For-
mal instruction in decision-making techniques may improve the quality of deci-
sions, but some aspects of successful decision-making are determined by
individual dispositions.

• Mental flexibility and creativity. This can be cast as problem solving. It
applies “strong” methods, which are based on acquired knowledge and skills,
and “weak” methods, which are used for poorly defined, ill-structured, chaotic
tasks. Creativity may be more closely associated with the “weak” methods.
The ability to train these weak methods directly is unclear from the research. It
seems more likely that native abilities determine the facility with which people
apply appropriate weak methods (i.e., achieve “creative solutions”) to novel
situations.

• Leadership. This appears to consist of motivational patterns and a combina-
tion of technical, conceptual, and interpersonal skills—the last being the most
difficult to acquire and measure. However, the technical and conceptual skills
needed by leaders can, to an appreciable extent, be taught. Interpersonal skills
and patterns of motivation required for leadership appear to be more dependent
on native abilities and are thus more difficult to teach.

• Emotion. This must be channeled and controlled if military personnel are to
perform complex tasks under the stress and confusion that accompany modern
military operations. Deeply engaging, sensory-immersing simulations provide
promise for training warfighters to retain critical pieces of information and to
perform under highly stressful conditions.

These issues have been discussed extensively in research literature, and Morrison

and Fletcher (2002) have discussed their specific relevance to cognitive readiness. The

points to be emphasized are that
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• The assessment and development of the capabilities suggested by these issues
will key on the adequacy of the cognitive models on which our education,
training, and performance aiding are based.

• The adequacy of our cognitive modeling is a matter of first importance in the
current unpredictable operational environment.

E. SUMMARY

The modeling efforts reviewed in this document, along with similar efforts involving

human cognition, represent significant opportunities for cooperative research by the North

Atlantic Treaty Organization (NATO) community concerned with the human competence

that is an essential component of every military operation. We should respond to the

opportunities they present.
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APEX Architecture for Procedure Execution
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Brahms Business Redesign Agent-Based Holistic Modeling System

CAPS Current Activation-Based Production System

CCT Cognitive Complexity Theory

C-I Theory Construction-Integration Theory

CogAff Cognition and Effect Project

COGENT Cognitive Objects within a Graphical Environment

COGNET Cognition as a Network of Tasks

CoLiDeS Comprehension-based Linked model of Deliberate Search

DCOG Distributed Cognition

DDR&E Director, Defense Research and Engineering

DoD Department of Defense

DTIC Defense Technical Information Center

EPIC Executive Process/Interactive Control
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GINA Generator of Interface Agents
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GOMS Goals, Operators, Methods, and Selection Rules

GOMSL GOMS Language
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HFM human factors modeling

HOS Human Operator Simulator

IDA Institute for Defense Analyses

IEEE Institute of Electrical and Electronics Engineers

IPME Integrated Performance Modeling Environment

ITS intelligent tutoring system

LICAI LInked model of Comprehension-based Action planning and
Instruction

LSA Latent Semantic Analysis

LTM long-term memory

Micro Saint Micro Systems Analysis of Integrated Network of Tasks

MIDAS Man-machine Integrated Design and Analysis System

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NTIS National Technical Information Service

NTSA National Training Systems Association

OMAR Operator Model Architecture

R&D research and development

SA situation awareness

SAE Society of Automative Engineers

SAMPLE Situation Awareness Model for Pilot-in-the Loop Evaluation

SISO Simulation Interoperability Standards Organization

Soar State, Operator, And Result
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